C
R. Mackowiak, Lenz, P., Ghori, O., Diego, F., Lange, O., and Rother, C.,
“CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation”, in
British Machine Vision Conference 2018, BMVC 2018, 2019.
T. Milbich, Roth, K., Sinha, S., Schmidt, L., Ghassemi, M., and Ommer, B.,
“Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning”. 2021.
D. Schmund, Münsterer, T., Lauer, H., Jähne, B., and Jähne, B.,
“The circular wind wave facilities at the University of Heidelberg”, in
Air-Water Gas Transfer - Selected papers from the Third International Symposium on Air-Water Gas Transfer, 1995, p. 505--516.
B. Michael Kelm, Menze, B. H., Neff, T., Zechmann, C. M., and Hamprecht, F. A.,
“CLARET: a tool for fully automated evaluation of MRSI with pattern recognition methods.”, in
Bildverarbeitung für die Medizin 2006 - Algorithmen, Systeme, Anwendungen, 2006, pp. 51-55.
Technical Report (275.25 KB) J. Heers, Schnörr, C., and Stiehl, H. S.,
“A class of parallel algorithms for nonlinear variational image segmentation”, in
Proc. Noblesse Workshop on Non–Linear Model Based Image Analysis (NMBIA'98), Glasgow, Scotland, 1998.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C.,
“A class of quasi-variational inequalities for adaptive image denoising and decomposition”,
Computational Optimization and Applications, vol. 54, pp. 371-398, 2013.
Technical Report (748.66 KB) F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C.,
“A Class of Quasi-Variational Inequalities for Adaptive Image Denoising
and Decomposition”,
Computational Optimization and Applications (COAP), vol. 54 (2), pp. 371-398, 2013.
F. A. Hamprecht,
“Classification”,
Practical Handbook on Image Processing for Scientific and Technical Applications. CRC Press, pp. 509-519, 2004.
Technical Report (320.84 KB) B. H. Menze, Wormit, M., Bachert, P., Lichy, M. P., Schlemmer, H. - P., and Hamprecht, F. A.,
“Classification of in vivo magnetic resonance spectra”, in
Classification in ubiquitous challenge: Proceedings of the GfKl 2004, 2004, pp. 362-369.
Technical Report (240.1 KB) B. H. Menze and Ur, J. A.,
“Classification of multispectral ASTER imagery in the archaeological survey for settlement sites of the Near East”, in
Proc 10th International Symposium on Physical Measurements and Signature in Remote Sensing (ISPMRS 07), Davos, Switzerland, 2007.
Technical Report (920.71 KB) F. O. Kaster, Kelm, B. Michael, Zechmann, C. M., Weber, M. - A., Hamprecht, F. A., and Nix, O.,
“Classification of Spectroscopic Images in the DIROlab Environment”, in
World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 2009, vol. 25/V, p. 252--255.
Technical Report (145.73 KB) M. Bautista, Sanakoyeu, A., Sutter, E., and Ommer, B.,
“CliqueCNN: Deep Unsupervised Exemplar Learning”, in
Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS), Barcelona, 2016.
Article (5.79 MB) M. Wenig, Leue, C., Platt, U., Jähne, B., and Haußecker, H.,
“Cloud classification analyzing image sequences”,
Computer Vision and Applications. A Guide for Students and Practitioners. Academic Press, p. 652--653, 2000.
A. Kannan, Winn, J., and Rother, C.,
“Clustering appearance and shape by learning jigsaws”, in
Advances in Neural Information Processing Systems, 2007, pp. 657–664.
A. Kannan, Winn, J., and Rother, C.,
“Clustering appearance and shape by learning jigsaws”, in
Advances in Neural Information Processing Systems, 2007, pp. 657–664.
M. Geese, Ruhnau, P., and Jähne, B.,
“CNN based dark signal non-uniformity estimation”, in
Cellular Nanoscale Networks and Their Applications (CNNA), 2012 13th International Workshop on, 2012, p. 1--6.
M. F. Carlsohn, Menze, B. H., Kelm, B. Michael, Hamprecht, F. A., Kercek, A., Leitner, R., and Polder, G.,
“Color image processing”, vol. 7(17),
R. Lukac and Plataniotis, K. N., Eds. CRC Press, 2006, pp. 393-419.
S. Waas and Jähne, B.,
“Combined height/slope/curvature measurements of short ocean wind waves”, in
Proc.\ The Air-Sea Interface, Radio and Acoustic Sensing, Turbulence and Wave Dynamics, Marseille, 24--30. June 1993, 1996, p. 383--388.
M. Baust, Weinmann, A., Wieczorek, M., Lasser, T., Storath, M., and Navab, N.,
“Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging based on a Riemannian Manifold Approach”,
IEEE Transactions on Medical Imaging, vol. 35, no. 8, pp. 1972–1989, 2016.
Technical Report (8.65 MB) R. Rocholz, Wanner, S., Schimpf, U., and Jähne, B.,
“Combined visualization of wind waves and water surface temperature”, in
Gas Transfer at Water Surfaces 2010, 2011, p. 496--506.
F. Hering, Wierzimok, D., Melville, W. K., and Jähne, B.,
“Combined wave and flow field visualization for investigation of short-wave/long-wave interaction”, in
Proc.\ The Air-Sea Interface, Radio and Acoustic Sensing, Turbulence and Wave Dynamics, Marseille, 24--30. June 1993, 1996, p. 133--138.
A. Bruhn, Weickert, J., and Schnörr, C.,
“Combining the Advantages of Local and Global Optic Flow Methods”, in
Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 454–462.
L. Nagel, Krall, K. Ellen, and Jähne, B.,
“Comparative heat and gas exchange measurements in the Heidelberg Aeolotron, a large annular wind-wave tank”,
Ocean Sci., vol. 11, p. 111--120, 2015.