All Publications

2022

Damrich, S (2022). Discovering Structure without Labels. Heidelberg University
Garrido, Q, Damrich, S, Jäger, A, Cerletti, D, Claassen, M, Najman, L and Hamprecht, F A (2022). Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder. Bioinformatics. arXiv preprint. 38 (Suppl 1) i316-i324
Fita, E, Damrich, S and Hamprecht, F A (2022). The Algebraic Path Problem for Graph Metrics. 39th International Conference on Machine Learning, PMLR. Proceedings . 162 19178-19204

2021

Sanakoyeu, A, Ma, P, Tschernezki, V and Ommer, B (2021). Improving Deep Metric Learning by Divide and Conquer. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). https://arxiv.org/abs/2109.04003
Damrich, S and Hamprecht, F A (2021). On UMAP's True Loss Function. NeurIPS. Proceedings. 34PDF icon Technical Report (1.87 MB)
Esser, P, Rombach, R, Blattmann, A and Ommer, B (2021). ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis. https://arxiv.org/abs/2108.08827
Gonzalez-Alvarado, D, Zeilmann, A and Schnörr, C (2021). Assignment Flows and Nonlocal PDEs on Graphs. GCPR, in press
Jenner, E, Fita, E and Hamprecht, F A (2021). Extensions of Karger's Algorithm: Why They Fail in Theory and How They Are Useful in Practice. ICCV. Proceedings. 4602-4611PDF icon Technical Report (1.1 MB)
Afifi, M, Derpanis, K G, Ommer, B and Brown, M S (2021). Learning Multi-Scale Photo Exposure Correction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2003.11596
Haußmann, (2021). Bayesian Neural Networks for Probabilistic Machine Learning. Heidelberg University
Pape, C, Remme, R, Wolny, A, Olberg, S, Wolf, S, Cerrone, L, Cortese, M, Klaus, S, Lucic, B, Ullrich, S, Anders-Össwein, M, Wolf, S, Cerikan, B, Neufeldt, C J, Ganter, M, Schnitzler, P, Merle, U, Lusic, M, Boulant, S, Stanifer, M, Bartenschlager, R, Hamprecht, F A, Kreshuk, A, Tischer, C, Kräusslich, H - G, Müller, B and Laketa, V (2021). Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific antibodies in human sera. BioEssays. 43
Blattmann, A, Milbich, T, Dorkenwald, M and Ommer, B (2021). Behavior-Driven Synthesis of Human Dynamics. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2103.04677
Bailoni, A (2021). Deep Learning for Graph-Based Image Instance Segmentation. Heidelberg University
Damrich, S and Hamprecht, F H (2021). UMAP does not reproduce high-dimensional similarities due to negative sampling. arXiv preprint
Sitenko, D, Boll, B and Schnörr, C (2021). Assignment Flows and Nonlocal PDEs on Graphs. GCPR, in press
Esser, P, Rombach, R and Ommer, B (2021). Taming Transformers for High-Resolution Image Synthesis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2012.09841
Kandemir, M, Agkül, A, Haußmann, M and Ünal, G (2021). Evidential Turing Processes. arXiv preprint. https://arxiv.org/abs/2106.01216
Arlt, H, Sui, X, Folger, B, Adams, C, Chen, X, Remme, R, Hamprecht, F A, DiMaio, F, Liao, M, Goodman, J M, Farese, R V and Walther, T C (2021). Seipin forms a flexible cage at lipid droplet formation sites. bioRxiv
Blattmann, A, Milbich, T, Dorkenwald, M and Ommer, B (2021). Understanding Object Dynamics for Interactive Image-to-Video Synthesis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2106.11303v1
Lang, S and Ommer, B (2021). Transforming Information Into Knowledge: How Computational Methods Reshape Art History. Digital Humanities Quaterly (DHQ). 15
Roth, K, Milbich, T, Ommer, B, Cohen, J Paul and Ghassemi, M (2021). S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning. Proceedings of International Conference on Machine Learning (ICML). https://arxiv.org/abs/2009.08348
Kotovenko, D, Wright, M, Heimbrecht, A and Ommer, B (2021). Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://compvis.github.io/brushstroke-parameterized-style-transfer/
Lang, S and Ommer, B (2021). Transforming Information Into Knowledge: How Computational Methods Reshape Art History. Digital Humanities Quaterly (DHQ). 15. http://digitalhumanities.org/dhq/vol/15/3/000560/000560.html
Islam, M Amirul, Kowal, M, Esser, P, Jia, S, Ommer, B, Derpanis, K G and Bruce, N (2021). Shape or Texture: Understanding Discriminative Features in CNNs. International Conference on Learning Representations (ICLR)
Sitenko, D, Boll, B and Schnörr, C (2021). Assignment Flow For Order-Constrained OCT Segmentation. Int J Computer Vision. 129
Haußmann, M, Gerwinn, S, Look, A, Rakitsch, B and Kandemir, M (2021). Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes. International Conference on Artificial Intelligence and Statistics . PMLR 130 478-486
Milbich, T, Roth, K, Sinha, S, Schmidt, L, Ghassemi, M and Ommer, B (2021). Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning. https://arxiv.org/abs/2107.09562
Schütz, L M, Louveaux, M, Vilches-Barro, A, Bouziri, S, Cerrone, L, Wolny, A, Kreshuk, A, Hamprecht, F A and Maizel, A (2021). Integration of Cell Growth and Asymmetric Division during Lateral Root Initiation in Arabidopsis thaliana. Plant and Cell Physiology. 62 1269-1279
Andersson, A, Diego, F, Hamprecht, F A and Wählby, C (2021). Istdeco: In Situ Transcriptomics Decoding By Deconvolution. bioRxiv
Dorkenwald, M, Milbich, T, Blattmann, A, Rombach, R, Derpanis, K G and Ommer, B (2021). Stochastic Image-to-Video Synthesis usin cINNs. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Walter, F C, Damrich, S and Hamprecht, F A (2021). MultiStar: Instance Segmentation of Overlapping Objects with Star-Convex Polygons. ISBI. 295-298PDF icon Technical Report (1.83 MB)
Brattoli, B, Büchler, U, Dorkenwald, M, Reiser, P, Filli, L, Helmchen, F, Wahl, A - S and Ommer, B (2021). Unsupervised behaviour analysis and magnification (uBAM) using deep learning. Nature Machine Intelligence. https://rdcu.be/ch6pL
Pape, C (2021). Scalable Instance Segmentation for Microscopy. Heidelberg University
Jahn, M, Rombach, R and Ommer, B (2021). High-Resolution Complex Scene Synthesis with Transformers. CVPR 2021, AI for Content Creation Workshop
Blattmann, A, Milbich, T, Dorkenwald, M and Ommer, B (2021). iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis. Proceedings of the International Conference on Computer Vision (ICCV). https://arxiv.org/abs/2107.02790
Rombach, R, Esser, P and Ommer, B (2021). Geometry-Free View Synthesis: Transformers and no 3D Priors. Proceedings of the Intl. Conf. on Computer Vision (ICCV). https://arxiv.org/abs/2104.07652
Bellagente, M, Haußmann, M, Luchmann, M and Plehn, T (2021). Understanding Event-Generation Networks via Uncertainties. arXiv preprint. https://arxiv.org/abs/2104.04543v1
Fita, E, Damrich, S and Hamprecht, F A (2021). Directed Probabilistic Watershed. NeurIPS. Proceedings. 34PDF icon Technical Report (957.78 KB)
Ruiz, A (2021). Deep K-Segments: A Generalization Of K-Means. Heidelberg University
Vijayan, A, Tofanelli, R, Strauss, S, Cerrone, L, Wolny, A, Strohmeier, J, Kreshuk, A, Hamprecht, F A, Smith, R S and Schneitz, K (2021). A Digital 3D Reference Atlas Reveals Cellular Growth Patterns Shaping the Arabidopsis Ovule. eLife

Pages