Publications

Export 162 results:
Author Title Type [ Year(Desc)]
Filters: First Letter Of Title is M  [Clear All Filters]
2014
J. H. Kappes, Beier, T., and Schnörr, C., MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves, in Computer Vision - {ECCV} 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part {II}, 2014.PDF icon Technical Report (557.49 KB)
J. Hendrik Kappes, Beier, T., and Schnörr, C., MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves, in International Workshop on Graphical Models in Computer Vision, 2014.
D. Kiefhaber, Zappa, C. J., and Jähne, B., Measurement of wind waves statistics from specular reflections, in Ocean Science Meeting, 23--28. 02. 2014, Honolulu Hawaii, 2014.
E. Mesarchaki, Kräuter, C., Krall, K. Ellen, Bopp, M., Helleis, F., Williams, J., and Jähne, B., Measuring air-sea gas exchange velocities in a large scale annular wind-wave tank, Ocean Sci. Discuss., vol. 11, p. 1643--1689, 2014.
H. Schäfer, Lenzen, F., and Garbe, C. S., Model based scattering correction in time-of-flight cameras, Optics Express, vol. 22, pp. 29835-29846, 2014.
A. Monroy, Bell, P., and Ommer, B., Morphological Analysis for Investigating Artistic Images, Image and Vision Computing, vol. 32, p. 414--423, 2014.PDF icon Technical Report (2.86 MB)
G. Urban, Bendszus, M., Hamprecht, F. A., and Kleesiek, J., Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks, in MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, pp. 31-35.
M. Wieler, Multiple Instance Learning with Random Forests and Applications in Industrial Optical Inspection. University of Heidelberg, 2014.
C. N. Straehle, Kandemir, M., Köthe, U., and Hamprecht, F. A., Multiple instance learning with response-optimized random forests, in ICPR. Proceedings, 2014, pp. 3768 - 3773.PDF icon Technical Report (296.66 KB)
M. Kandemir, Klami, A., Gonen, M., Vetek, A., and Kaski, S., Multi-task and multi-view learning of user state, Neurocomputing, vol. 139, pp. 97-106, 2014.
2016
D. L. Richmond, Kainmueller, D., Yang, M. Y., Myers, E. W., and Rother, C., Mapping auto-context decision forests to deep convnets for semantic segmentation, in British Machine Vision Conference 2016, BMVC 2016, 2016, vol. 2016-Septe, pp. 144.1–144.12.
D. L. Richmond, Kainmueller, D., Yang, M. Y., Myers, E. W., and Rother, C., Mapping auto-context decision forests to deep convnets for semantic segmentation, in British Machine Vision Conference 2016, BMVC 2016, 2016, vol. 2016-Septe, pp. 144.1–144.12.
D. L. Richmond, Kainmueller, D., Yang, M. Y., Myers, E. W., and Rother, C., Mapping auto-context decision forests to deep convnets for semantic segmentation, in British Machine Vision Conference 2016, BMVC 2016, 2016, vol. 2016-Septe, pp. 144.1–144.12.
T. M. D. Strouse, Marijuana's Public Health Pros and Cons | For Better | US News, U.S. News and World Report, 2016.
S. Lenor, Model-Based Estimation of Meteorological Visibility in the Context of Automotive Camera Systems, vol. Dissertation. IWR, Univ. Heidelberg, 2016.
J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Multicuts and Perturb & MAP for Probabilistic Graph Clustering, Journal of Mathematical Imaging and Vision, vol. 56, pp. 221–237, 2016.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Multicuts and Perturb & MAP for Probabilistic Graph Clustering, J. Math. Imag. Vision, vol. 56, pp. 221–237, 2016.

Pages