Publications

Export 224 results:
Author [ Title(Desc)] Type Year
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Menze, B H, Wormit, M, Bachert, P, Lichy, M P, Schlemmer, H - P and Hamprecht, F A (2004). Classification of in vivo magnetic resonance spectra. Classification in ubiquitous challenge: Proceedings of the GfKl 2004. Springer. 362-369PDF icon Technical Report (240.1 KB)
Kaster, F O, Kelm, B Michael, Zechmann, C M, Weber, M - A, Hamprecht, F A and Nix, O (2009). Classification of Spectroscopic Images in the DIROlab Environment. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. Springer. 25/V 252--255PDF icon Technical Report (145.73 KB)
Carlsohn, M F, Menze, B H, Kelm, B Michael, Hamprecht, F A, Kercek, A, Leitner, R and Polder, G (2006). Color image processing. CRC Press. 7(17) 393-419
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Sungwoong, K, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems. CVPR 2013. ProceedingsPDF icon Technical Report (1.35 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem. CVPRPDF icon Technical Report (1.35 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184. http://hci.iwr.uni-heidelberg.de/opengm2/
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. http://arxiv.org/abs/1404.0533
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 1-30PDF icon Technical Report (1.5 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. Int.~J.~Comp.~VisionPDF icon Technical Report (5.12 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. abs/1404.0533. http://hci.iwr.uni-heidelberg.de/opengm2/PDF icon Technical Report (3.32 MB)
Kaster, F O, Weber, M - A and Hamprecht, F A (2011). Comparative Validation of Graphical Models for Learning Tumor Segmentations from Noisy Manual Annotations. LNCS. Springer, Heidelberg. LNCS 6533 74-85PDF icon Technical Report (544.56 KB)
Weber, C, Zechmann, C M, Kelm, B Michael, Zamecnik, R, Hendricks, D, Waldherr, R, Hamprecht, F A, Delorme, S, Bachert, P and Ikinger, U (2007). Comparison of correctness of manuel and automatic evaluation of MR-spectrum with prostrate cancer. Der Urologe. 46 1252
Menze, B H, Kelm, B Michael, Masuch, R, Himmelreich, U, Bachert, P, Petrich, W and Hamprecht, F A (2009). A Comparison of Random Forest and its Gini Importance with Standard Chemometric Methods for the Feature Selection and Classification of Spectral Data. BMC Bioinformatics. 10:213PDF icon Technical Report (675 KB)
Kirchner, M, Renard, B Y, Köthe, U, Pappin, D J, Hamprecht, F A, Steen, J A J and Steen, H (2010). Computational Protein Profile Similarity Screening for Quantitative Mass Spectrometry Experiments. Bioinformatics. 26 (1) 77-83PDF icon Technical Report (380.19 KB)
Kandemir, M and Hamprecht, F A (2014). Computer-aided diagnosis from weak supervision: A benchmarking study. Computerized Medical Imaging and Graphics. 42 44-50PDF icon Technical Report (4.28 MB)
Hanselmann, M, Kirchner, M, Renard, B Y, Amstalden, E R, Glunde, K, Heeren, R M A and Hamprecht, F A (2008). Concise Representation of MS Images by Probabilistic Latent Semantic Analysis. Analytical Chemistry. 80 9649-9658PDF icon Technical Report (3.91 MB)
Schiegg, M, Hanslovsky, P, Kausler, B X, Hufnagel, L and Hamprecht, F A (2013). Conservation Tracking. ICCV 2013. Proceedings. 2928--2935PDF icon Technical Report (5.22 MB)
Maco, B, Holtmaat, A, Cantoni, M, Kreshuk, A, Straehle, C N, Hamprecht, F A and Knott, G W (2013). Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons. PloS one. 8 (2)PDF icon Technical Report (2.13 MB)
Peter, S, Diego, F, Hamprecht, F A and Nadler, B (2017). Cost-efficient Gradient Boosting. NIPS, poster
Beier, T, Kröger, T, Kappes, J H, Köthe, U and Hamprecht, F A (2014). Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning. 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014. http://dx.doi.org/10.1109/CVPR.2014.17PDF icon Technical Report (10.06 MB)
D
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Deep Active Learning with Adaptive Acquisition. IJCAI. Proceedings. 2470-2476PDF icon Technical Report (137.6 KB)
Kandemir, M and Hamprecht, F A (2015). The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors. NIPS. Proceedings. 44 145-159PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
Lou, X, Kaster, F O, Lindner, M, Kausler, B X, Köthe, U, Höckendorf, B, Wittbrodt, J, Jänicke, H and Hamprecht, F A (2011). DELTR: Digital Embryo Lineage Tree Reconstructor. Eighth IEEE International Symposium on Biomedical Imaging (ISBI). Proceedings. 1557-1560PDF icon Technical Report (1.44 MB)
Frank, M, Plaue, M and Hamprecht, F A (2009). Denoising of Continuous-Wave Time-Of-Flight Depth Images Using Confidence Measures. Optical Engineering. 48, 077003PDF icon Technical Report (2.5 MB)
Decker, C and Hamprecht, F A (2014). Detecting individual body parts improves mouse behavior classification. Workshop on visual observation and analysis of Vertebrate And Insect Behavior (VAIB), 22nd International Conference on Pattern Recognition (ICPR). ProceedingsPDF icon Technical Report (1.48 MB)
Görlitz, L, Hamprecht, F A and Staudacher, M (2005). Detektion von Partikeln in Intensitätsbildern mit Hilfe eines morphologischen Skalenraumes. Robert-Bosch GmbH, University of Heidelberg
Lou, X, Kirchner, M, Renard, B Y, Köthe, U, Graf, C, Lee, C, Steen, J A J, Steen, H, Mayer, M P and Hamprecht, F A (2010). Deuteration Distribution Estimation with Improved Sequence Coverage for HX/MS Experiments. Bioinformatics. 26(12) 1535-1541PDF icon Technical Report (518.01 KB)
Hamprecht, F A, Cohen, A J, Tozer, D J and Handy, N C (1998). Development and assessment of new exchange-correlation functionals. Journal of Chemical Physics. 109 6264-6271
Steen, J A J, Steen, H, Georgi, A, Parker, K C, Springer, M, Kirchner, M, Hamprecht, F A and Kirschner, M W (2008). Different Phosphorylation States of the Anaphase Promoting Complex in Response to Anti-Mitotic Drugs: A Quantitative Proteomic Analysis. Proceedings of the National Academy of Sciences. 105 6069-6074PDF icon Technical Report (173.02 KB)
Vijayan, A, Tofanelli, R, Strauss, S, Cerrone, L, Wolny, A, Strohmeier, J, Kreshuk, A, Hamprecht, F A, Smith, R S and Schneitz, K (2021). A Digital 3D Reference Atlas Reveals Cellular Growth Patterns Shaping the Arabidopsis Ovule. eLife
Kandemir, M, Feuchtinger, A, Walch, A and Hamprecht, F A (2014). Digital Pathology: Multiple instance learning can detect Barrett'scancer. ISBI. Proceedings. 1348-1351PDF icon Technical Report (2.86 MB)
Kausler, B X, Schiegg, M, Andres, B, Lindner, M, Köthe, U, Leitte, H, Wittbrodt, J, Hufnagel, L and Hamprecht, F A (2012). A Discrete Chain Graph Model for 3d+t Cell Tracking with High Misdetection Robustness. ECCV 2012. Proceedings. 7574 144-157PDF icon Technical Report (809.07 KB)
Haubold, C, Uhlmann, V, Unser, M and Hamprecht, F A (2017). Diverse M-best Solutions by Dynamic Programming. GCPR. Proceedings. Springer. LNCS 10496 255-267

Pages