Publications

Export 114 results:
Author [ Title(Asc)] Type Year
Filters: Author is Björn Ommer  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
M. Afifi, Derpanis, K. G., Ommer, B., and Brown, M. S., Learning Multi-Scale Photo Exposure Correction, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
B. Antic and Ommer, B., Learning Latent Constituents for Recognition of Group Activities in Video, in Proceedings of the European Conference on Computer Vision (ECCV) (Oral), 2014, p. 33--47.PDF icon Technical Report (4.54 MB)
P. Yarlagadda, Eigenstetter, A., and Ommer, B., Learning Discriminative Chamfer Regularization, in BMVC, 2012, p. 1--11.
B. Ommer and Buhmann, J. M., Learning Compositional Categorization Models, in Proceedings of the European Conference on Computer Vision, 2006, vol. 3953, p. 316--329.PDF icon Technical Report (1.35 MB)
F
P. Yarlagadda and Ommer, B., From Meaningful Contours to Discriminative Object Shape, in Proceedings of the European Conference on Computer Vision, 2012, vol. 7572, p. 766--779.PDF icon Technical Report (4.58 MB)
E
V. Roth and Ommer, B., Exploiting Low-level Image Segmentation for Object Recognition, in Pattern Recognition, Symposium of the DAGM, 2006, vol. 4174, p. 11--20.PDF icon Technical Report (473.84 KB)
M. Kandemir, Rubio, J. C., Schmidt, U., Wojek, C., Welbl, J., Ommer, B., and Hamprecht, F. A., Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures, in Medical Image Computing and Computer-Assisted Intervention, 2014, p. 154--161.PDF icon Technical Report (2 MB)
M. Kandemir, Rubio, J. C., Schmidt, U., Welbl, J., Ommer, B., and Hamprecht, F. A., Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures, in MICCAI. Proceedings, 2014, pp. 154-161.PDF icon Paper (2 MB)
J. Wagner and Ommer, B., Efficiently Clustering Earth Mover's Distance, in Proceedins of the Aian Conference on Computer Vision, 2010, p. 477--488.PDF icon Technical Report (841.98 KB)
A. - S. Wahl, Erlebach, E., Brattoli, B., Büchler, U., Kaiser, J., Ineichen, V. B., Mosberger, A. C., Schneeberger, S., Imobersteg, S., Wieckhorst, M., Stirn, M., Schroeter, A., Ommer, B., and Schwab, M. E., Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats, Sage Journals, vol. Journal of Cerebral Blood Flow & Metabolism, 2018.PDF icon 0271678x18777661.pdf (770.87 KB)
D
A. Sanakoyeu, Tschernezki, V., Büchler, U., and Ommer, B., Divide and Conquer the Embedding Space for Metric Learning, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019.
T. Milbich, Roth, K., Bharadhwaj, H., Sinha, S., Bengio, Y., Ommer, B., and Cohen, J. Paul, DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning, IEEE European Conference on Computer Vision (ECCV). 2020.
P. Esser, Rombach, R., and Ommer, B., A Disentangling Invertible Interpretation Network for Explaining Latent Representations, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020.PDF icon Article (13.07 MB)
P. Bell and Ommer, B., Digital Connoisseur? How Computer Vision Supports Art History, in Connoisseurship nel XXI secolo. Approcci, Limiti, Prospettive, A. Aggujaro & S. Albl (ed.), Rome: Artemide, 2016.
J. Schlecht, Carque, B., and Ommer, B., Detecting Gestures in Medieval Images, in Proceedings of the International Conference on Image Processing, 2011, p. 1309--1312.PDF icon Technical Report (1.61 MB)
M. Bautista, Sanakoyeu, A., and Ommer, B., Deep Unsupervised Similarity Learning using Partially Ordered Sets, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon deep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
A. Sanakoyeu, Bautista, M., and Ommer, B., Deep Unsupervised Learning of Visual Similarities, Pattern Recognition, vol. 78, 2018.PDF icon PDF (8.35 MB)
N. Ufer and Ommer, B., Deep Semantic Feature Matching, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon article (8.88 MB)
T. Dencker, Klinkisch, P., Maul, S. M., and Ommer, B., Deep learning of cuneiform sign detection with weak supervision using transliteration alignment, PLoS ONE, vol. 15, no. 12, 2020.
S. Lang and Ommer, B., Das Objekt jenseits der Digitalisierung, Das digitale Objekt, vol. 7. 2020.PDF icon lang_ommer_digitalhumanities_2020_.pdf (599.56 KB)
C
N. Sayed, Brattoli, B., and Ommer, B., Cross and Learn: Cross-Modal Self-Supervision, in German Conference on Pattern Recognition (GCPR) (Oral), Stuttgart, Germany, 2018.PDF icon Article (891.47 KB)PDF icon Oral slides (9.17 MB)
J. Schlecht and Ommer, B., Contour-based Object Detection, in BMVC, 2011, p. 1--9.PDF icon Technical Report (2.62 MB)
D. Kotovenko, Sanakoyeu, A., Lang, S., and Ommer, B., Content and Style Disentanglement for Artistic Style Transfer, in Proceedings of the Intl. Conf. on Computer Vision (ICCV), 2019.
P. Bell and Ommer, B., Computer Vision und Kunstgeschichte — Dialog zweier Bildwissenschaften, in Computing Art Reader: Einführung in die digitale Kunstgeschichte, P. Kuroczyński et al. (ed.), 2018.PDF icon 413-17-83318-2-10-20181210.pdf (2.98 MB)
S. V. E. Keränen, DePace, A., Hendriks, C. L. Luengo, Fowlkes, C., Arbelaez, P., Ommer, B., Brox, T., Henriquez, C., Wunderlich, Z., Eckenrode, K., Fischer, B., Hammonds, A., and Celniker, S. E., Computational Analysis of Quantitative Changes in Gene Expression and Embryo Morphology between Species, in Evolution-The Molecular Landscape, 2009.
B. Ommer and Buhmann, J. M., A Compositionality Architecture for Perceptual Feature Grouping, in Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2003, vol. 2683, p. 275--290.PDF icon Technical Report (2.89 MB)
B. Ommer and Buhmann, J. M., Compositional Object Recognition, Segmentation, and Tracking in Video, in Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2007, vol. 4679, p. 318--333.PDF icon Technical Report (2.78 MB)
M. Bautista, Sanakoyeu, A., Sutter, E., and Ommer, B., CliqueCNN: Deep Unsupervised Exemplar Learning, in Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS), Barcelona, 2016.PDF icon Article (5.79 MB)

Pages