Publications

Export 114 results:
Author [ Title(Asc)] Type Year
Filters: Author is Björn Ommer  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Afifi, M, Derpanis, K G, Ommer, B and Brown, M S (2021). Learning Multi-Scale Photo Exposure Correction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2003.11596
Antic, B and Ommer, B (2014). Learning Latent Constituents for Recognition of Group Activities in Video. Proceedings of the European Conference on Computer Vision (ECCV) (Oral). Springer. 33--47PDF icon Technical Report (4.54 MB)
Yarlagadda, P, Eigenstetter, A and Ommer, B (2012). Learning Discriminative Chamfer Regularization. BMVC. Springer. 1--11. http://www.bmva.org/bmvc/2012/BMVC/paper020/paper020.pdf
Ommer, B and Buhmann, J M (2006). Learning Compositional Categorization Models. Proceedings of the European Conference on Computer Vision. Springer. 3953 316--329PDF icon Technical Report (1.35 MB)
F
Yarlagadda, P and Ommer, B (2012). From Meaningful Contours to Discriminative Object Shape. Proceedings of the European Conference on Computer Vision. Springer. 7572 766--779PDF icon Technical Report (4.58 MB)
E
Roth, V and Ommer, B (2006). Exploiting Low-level Image Segmentation for Object Recognition. Pattern Recognition, Symposium of the DAGM. Springer. 4174 11--20PDF icon Technical Report (473.84 KB)
Kandemir, M, Rubio, J C, Schmidt, U, Wojek, C, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. Medical Image Computing and Computer-Assisted Intervention. Springer. 154--161PDF icon Technical Report (2 MB)
Kandemir, M, Rubio, J C, Schmidt, U, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. MICCAI. Proceedings. Springer. 154-161PDF icon Paper (2 MB)
Wagner, J and Ommer, B (2010). Efficiently Clustering Earth Mover's Distance. Proceedins of the Aian Conference on Computer Vision. Springer. 477--488PDF icon Technical Report (841.98 KB)
Wahl, A - S, Erlebach, E, Brattoli, B, Büchler, U, Kaiser, J, Ineichen, V B, Mosberger, A C, Schneeberger, S, Imobersteg, S, Wieckhorst, M, Stirn, M, Schroeter, A, Ommer, B and Schwab, M E (2018). Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats. Sage Journals. Journal of Cerebral Blood Flow & Metabolism. http://journals.sagepub.com/doi/abs/10.1177/0271678X18777661PDF icon 0271678x18777661.pdf (770.87 KB)
D
Sanakoyeu, A, Tschernezki, V, Büchler, U and Ommer, B (2019). Divide and Conquer the Embedding Space for Metric Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://github.com/CompVis/metric-learning-divide-and-conquer
Milbich, T, Roth, K, Bharadhwaj, H, Sinha, S, Bengio, Y, Ommer, B and Cohen, J Paul (2020). DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning. IEEE European Conference on Computer Vision (ECCV). https://arxiv.org/abs/2004.13458
Esser, P, Rombach, R and Ommer, B (2020). A Disentangling Invertible Interpretation Network for Explaining Latent Representations. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://compvis.github.io/iin/PDF icon Article (13.07 MB)
Bell, P and Ommer, B (2016). Digital Connoisseur? How Computer Vision Supports Art History. Connoisseurship nel XXI secolo. Approcci, Limiti, Prospettive, A. Aggujaro & S. Albl (ed.). Artemide, Rome
Schlecht, J, Carque, B and Ommer, B (2011). Detecting Gestures in Medieval Images. Proceedings of the International Conference on Image Processing. IEEE. 1309--1312PDF icon Technical Report (1.61 MB)
Bautista, M, Sanakoyeu, A and Ommer, B (2017). Deep Unsupervised Similarity Learning using Partially Ordered Sets. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon deep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
Sanakoyeu, A, Bautista, M and Ommer, B (2018). Deep Unsupervised Learning of Visual Similarities. Pattern Recognition. 78. https://authors.elsevier.com/a/1WXUt77nKSb25 PDF icon PDF (8.35 MB)
Ufer, N and Ommer, B (2017). Deep Semantic Feature Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon article (8.88 MB)
Dencker, T, Klinkisch, P, Maul, S M and Ommer, B (2020). Deep learning of cuneiform sign detection with weak supervision using transliteration alignment. PLoS ONE. 15. https://hci.iwr.uni-heidelberg.de/compvis/projects/cuneiform
Lang, S and Ommer, B (2020). Das Objekt jenseits der Digitalisierung. Das digitale Objekt. 7. http://www.deutsches-museum.de/fileadmin/Content/010_DM/060_Verlag/studies-7.pdfPDF icon lang_ommer_digitalhumanities_2020_.pdf (599.56 KB)
C
Sayed, N, Brattoli, B and Ommer, B (2018). Cross and Learn: Cross-Modal Self-Supervision. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, Germany. https://arxiv.org/abs/1811.03879v1PDF icon Article (891.47 KB)PDF icon Oral slides (9.17 MB)
Schlecht, J and Ommer, B (2011). Contour-based Object Detection. BMVC. 1--9PDF icon Technical Report (2.62 MB)
Kotovenko, D, Sanakoyeu, A, Lang, S and Ommer, B (2019). Content and Style Disentanglement for Artistic Style Transfer. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Bell, P and Ommer, B (2018). Computer Vision und Kunstgeschichte — Dialog zweier Bildwissenschaften. Computing Art Reader: Einführung in die digitale Kunstgeschichte, P. Kuroczyński et al. (ed.)PDF icon 413-17-83318-2-10-20181210.pdf (2.98 MB)
Keränen, S V E, DePace, A, Hendriks, C L Luengo, Fowlkes, C, Arbelaez, P, Ommer, B, Brox, T, Henriquez, C, Wunderlich, Z, Eckenrode, K, Fischer, B, Hammonds, A and Celniker, S E (2009). Computational Analysis of Quantitative Changes in Gene Expression and Embryo Morphology between Species. Evolution-The Molecular Landscape
Ommer, B and Buhmann, J M (2003). A Compositionality Architecture for Perceptual Feature Grouping. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 2683 275--290PDF icon Technical Report (2.89 MB)
Ommer, B and Buhmann, J M (2007). Compositional Object Recognition, Segmentation, and Tracking in Video. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 4679 318--333PDF icon Technical Report (2.78 MB)
Bautista, M, Sanakoyeu, A, Sutter, E and Ommer, B (2016). CliqueCNN: Deep Unsupervised Exemplar Learning. Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS). MIT Press, Barcelona. https://arxiv.org/abs/1608.08792PDF icon Article (5.79 MB)

Pages