Publications

Export 224 results:
Author Title [ Type(Asc)] Year
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
Conference Paper
T. Kröger, Mikula, S., Denk, W., Köthe, U., and Hamprecht, F. A., Learning to Segment Neurons with Non-local Quality Measures, in MICCAI 2013. Proceedings, part II, 2013, vol. 8150, pp. 419-427.PDF icon Technical Report (2.87 MB)
F. Diego and Hamprecht, F. A., Learning Multi-Level Sparse Representation for Identifying Neuronal Activity, in Signal Processing with Adaptive Sparse Structured Representations Workshop (SPARS). Book of Abstracts., 2013.PDF icon Technical Report (1.05 MB)
F. Diego and Hamprecht, F. A., Learning Multi-Level Sparse Representation, in NIPS. Proceedings, 2013.PDF icon Technical Report (2.79 MB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-Limited Exhaustive Search in Discrete Graphical Models, in Computer Vision - {ECCV} 2012 - 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part {VII}, 2012.PDF icon Technical Report (446.28 KB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-limited Exhaustive Search in Discrete Graphical Models, in ECCV 2012, 2012.PDF icon Technical Report (532.64 KB)
B. Andres, Kappes, J. Hendrik, Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-limited Exhaustive Search in Discrete Graphical Models, in ECCV 2012, 2012.
C. N. Straehle, Peter, S., Köthe, U., and Hamprecht, F. A., K-smallest Spanning Tree Segmentations, in German Conference on Pattern Recognition (DAGM/GCPR). Proceedings, 2013, pp. 375-384.PDF icon Technical Report (1.18 MB)
M. Kandemir and Hamprecht, F. A., Instance Label Prediction by Dirichlet Process Multiple Instance Learning, in UAI. Proceedings, 2014.PDF icon Technical Report (4.26 MB)
N. Krasowski, Beier, T., Knott, G. W., Köthe, U., Hamprecht, F. A., and Kreshuk, A., Improving 3D EM Data Segmentation by Joint Optimization over Boundary Evidence and Biological Priors, in 12th {IEEE} International Symposium on Biomedical Imaging, {ISBI} 2015, Brooklyn, NY, USA, April 16-19, 2015, 2015, pp. 536-539.PDF icon Technical Report (2.25 MB)
C. Sommer, Straehle, C. N., Köthe, U., and Hamprecht, F. A., ilastik: Interactive Learning and Segmentation Toolkit, in Eighth IEEE International Symposium on Biomedical Imaging (ISBI 2011).Proceedings, 2011, pp. 230-233.
J. Kleesiek, Biller, A., Urban, G., Köthe, U., Bendszus, M., and Hamprecht, F. A., ilastik for Multi-modal Brain Tumor Segmentation, in MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, 3rdplace, 2014, pp. 12-17.PDF icon Technical Report (405.91 KB)
B. Andres, Kröger, T., Briggmann, K. L., Denk, W., Norogod, N., Knott, G. W., Köthe, U., and Hamprecht, F. A., Globally Optimal Closed-Surface Segmentation for Connectomics, in ECCV 2012. Proceedings, Part 3, 2012, pp. 778-791.PDF icon Technical Report (2.72 MB)
U. Köthe, Andres, B., Kröger, T., and Hamprecht, F. A., Geometric Analysis of 3D Electron Microscopy Data, in Proceedings of Workshop on Discrete Geometry and Mathematical Morphology (WADGMM), 2010, pp. 22-26.PDF icon Technical Report (1.43 MB)
T. Beier, Hamprecht, F. A., and Kappes, J. H., Fusion Moves for Correlation Clustering, in CVPR. Proceedings, 2015, pp. 3507-3516.PDF icon Technical Report (1.19 MB)
B. H. Menze, Kelm, B. Michael, and Hamprecht, F. A., From eigenspots to fisherspots -- latent spaces in the nonlinear detection of spot patterns in a highly variable background, in Advances in data analysis, 2007, vol. 33, pp. 255-262.PDF icon Technical Report (248.87 KB)
S. Wanner, Sommer, C., Rocholz, R., Hamprecht, F. A., and Jähne, B., A Framework for Interactive Visualization and Classification of Dynamical Processes at the Water Surface, in 16th International Workshop on Vision, Modelling and Visualization, 2011, pp. 199-206.PDF icon Technical Report (4.67 MB)
S. Wanner, Sommer, C., Rocholz, R., Jung, M., Hamprecht, F. A., and Jähne, B., A framework for interactive visualization and classification of dynamical processes at the water surface, in 16th International Workshop on Vision, Modelling and Visualization, 2011, p. 199--206.
C. S. Garbe, Schnörr, C., and Jähne, B., Fluid flow estimation through integration of physical flow configurations, in Proceedings of the 29th DAGM Symposium on Pattern Recognition, 2007, p. 92--101.
M. Kandemir, Rubio, J. C., Schmidt, U., Wojek, C., Welbl, J., Ommer, B., and Hamprecht, F. A., Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures, in Medical Image Computing and Computer-Assisted Intervention, 2014, p. 154--161.PDF icon Technical Report (2 MB)
M. Kandemir, Rubio, J. C., Schmidt, U., Welbl, J., Ommer, B., and Hamprecht, F. A., Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures, in MICCAI. Proceedings, 2014, pp. 154-161.PDF icon Paper (2 MB)
B. Andres, Kondermann, C., Kondermann, D., Hamprecht, F. A., and Garbe, C. S., On errors-in-variables regression with arbitrary covariance and its application to optical flow estimation, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, 2008, p. 1--6.
M. Kandemir, Zhang, C., and Hamprecht, F. A., Empowering multiple instance histopathology cancer diagnosis by cell graphs, in MICCAI. Proceedings, 2014, vol. 8674, pp. 228-235.PDF icon Technical Report (1.76 MB)
B. Andres, Kappes, J. H., Köthe, U., Schnörr, C., and Hamprecht, F. A., An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM, in Pattern Recognition, Proc.~32th DAGM Symposium, 2010, pp. 353-362.
B. Andres, Kappes, J. H., Köthe, U., Schnörr, C., and Hamprecht, F. A., An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM, in Pattern Recognition, Proc.~32th DAGM Symposium, 2010.PDF icon Technical Report (218.43 KB)
B. X. Kausler, Schiegg, M., Andres, B., Lindner, M., Köthe, U., Leitte, H., Wittbrodt, J., Hufnagel, L., and Hamprecht, F. A., A Discrete Chain Graph Model for 3d+t Cell Tracking with High Misdetection Robustness, in ECCV 2012. Proceedings, 2012, vol. 7574, pp. 144-157.PDF icon Technical Report (809.07 KB)
C. Decker and Hamprecht, F. A., Detecting individual body parts improves mouse behavior classification, in Workshop on visual observation and analysis of Vertebrate And Insect Behavior (VAIB), 22nd International Conference on Pattern Recognition (ICPR). Proceedings, 2014.PDF icon Technical Report (1.48 MB)
X. Lou, Kaster, F. O., Lindner, M., Kausler, B. X., Köthe, U., Höckendorf, B., Wittbrodt, J., Jänicke, H., and Hamprecht, F. A., DELTR: Digital Embryo Lineage Tree Reconstructor, in Eighth IEEE International Symposium on Biomedical Imaging (ISBI). Proceedings, 2011, pp. 1557-1560.PDF icon Technical Report (1.44 MB)
T. Beier, Kröger, T., Kappes, J. H., Köthe, U., and Hamprecht, F. A., Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning, in 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014, 2014.PDF icon Technical Report (10.06 MB)
M. Schiegg, Hanslovsky, P., Kausler, B. X., Hufnagel, L., and Hamprecht, F. A., Conservation Tracking, in ICCV 2013. Proceedings, 2013, p. 2928--2935.PDF icon Technical Report (5.22 MB)
F. O. Kaster, Weber, M. - A., and Hamprecht, F. A., Comparative Validation of Graphical Models for Learning Tumor Segmentations from Noisy Manual Annotations, in LNCS, 2011, vol. LNCS 6533, pp. 74-85.PDF icon Technical Report (544.56 KB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Sungwoong, K., Kausler, B. X., Lellmann, J., Komodakis, N., and Rother, C., A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems, in CVPR 2013. Proceedings, 2013.PDF icon Technical Report (1.35 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Lellmann, J., Komodakis, N., and Rother, C., A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem, in CVPR, 2013.PDF icon Technical Report (1.35 MB)
F. O. Kaster, Kelm, B. Michael, Zechmann, C. M., Weber, M. - A., Hamprecht, F. A., and Nix, O., Classification of Spectroscopic Images in the DIROlab Environment, in World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 2009, vol. 25/V, p. 252--255.PDF icon Technical Report (145.73 KB)
B. H. Menze, Wormit, M., Bachert, P., Lichy, M. P., Schlemmer, H. - P., and Hamprecht, F. A., Classification of in vivo magnetic resonance spectra, in Classification in ubiquitous challenge: Proceedings of the GfKl 2004, 2004, pp. 362-369.PDF icon Technical Report (240.1 KB)
B. Michael Kelm, Menze, B. H., Neff, T., Zechmann, C. M., and Hamprecht, F. A., CLARET: a tool for fully automated evaluation of MRSI with pattern recognition methods., in Bildverarbeitung für die Medizin 2006 - Algorithmen, Systeme, Anwendungen, 2006, pp. 51-55.PDF icon Technical Report (275.25 KB)

Pages