Publications

Export 114 results:
[ Author(Desc)] Title Type Year
Filters: Author is Björn Ommer
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
D. Lorenz, Bereska, L., Milbich, T., and Ommer, B., Unsupervised Part-Based Disentangling of Object Shape and Appearance, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Oral + Best paper finalist: top 45 / 5160 submissions), 2019.
K
D. Kotovenko, Sanakoyeu, A., Lang, S., Ma, P., and Ommer, B., Using a Transformation Content Block For Image Style Transfer, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019.
L
S. Lang and Ommer, B., Attesting Similarity: Supporting the Organization and Study of Art Image Collections with Computer Vision, Digital Scholarship in the Humanities, Oxford University Press, vol. 33, no. 4, pp. 845-856, 2018.
B
P. Bell and Ommer, B., Computer Vision und Kunstgeschichte — Dialog zweier Bildwissenschaften, in Computing Art Reader: Einführung in die digitale Kunstgeschichte, P. Kuroczyński et al. (ed.), 2018.PDF icon 413-17-83318-2-10-20181210.pdf (2.98 MB)
S
N. Sayed, Brattoli, B., and Ommer, B., Cross and Learn: Cross-Modal Self-Supervision, in German Conference on Pattern Recognition (GCPR) (Oral), Stuttgart, Germany, 2018.PDF icon Article (891.47 KB)PDF icon Oral slides (9.17 MB)
A. Sanakoyeu, Bautista, M., and Ommer, B., Deep Unsupervised Learning of Visual Similarities, Pattern Recognition, vol. 78, 2018.PDF icon PDF (8.35 MB)
B
U. Büchler, Brattoli, B., and Ommer, B., Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning, in Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 2018.PDF icon Article (5.34 MB)PDF icon buechler_eccv18_poster.pdf (1.65 MB)
S
A. Sanakoyeu, Kotovenko, D., Lang, S., and Ommer, B., A Style-Aware Content Loss for Real-time HD Style Transfer, in Proceedings of the European Conference on Computer Vision (ECCV) (Oral), 2018.
E
P. Esser, Haux, J., Milbich, T., and Ommer, B., Towards Learning a Realistic Rendering of Human Behavior, in European Conference on Computer Vision (ECCV - HBUGEN), 2018.
P. Esser, Sutter, E., and Ommer, B., A Variational U-Net for Conditional Appearance and Shape Generation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (short Oral), 2018.
B
O. Blum, Brattoli, B., and Ommer, B., X-GAN: Improving Generative Adversarial Networks with ConveX Combinations, in German Conference on Pattern Recognition (GCPR) (Oral), Stuttgart, Germany, 2018.PDF icon Article (6.65 MB)PDF icon Supplementary material (7.96 MB)PDF icon Oral slides (14.96 MB)
U
N. Ufer and Ommer, B., Deep Semantic Feature Matching, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon article (8.88 MB)
B
M. Bautista, Sanakoyeu, A., and Ommer, B., Deep Unsupervised Similarity Learning using Partially Ordered Sets, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon deep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
M. Bautista, Fuchs, P., and Ommer, B., Learning Where to Drive by Watching Others, Proceedings of the German Conference Pattern Recognition, vol. 1. Springer-Verlag, Basel, 2017.
B. Brattoli, Büchler, U., Wahl, A. - S., Schwab, M. E., and Ommer, B., LSTM Self-Supervision for Detailed Behavior Analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon Article (8.75 MB)
S
Ö. Sümer, Dencker, T., and Ommer, B., Self-supervised Learning of Pose Embeddings from Spatiotemporal Relations in Videos, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.PDF icon Paper (3.98 MB)PDF icon Supplementary Material (3.36 MB)
B
M. Bautista, Sanakoyeu, A., Sutter, E., and Ommer, B., CliqueCNN: Deep Unsupervised Exemplar Learning, in Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS), Barcelona, 2016.PDF icon Article (5.79 MB)
P. Bell and Ommer, B., Digital Connoisseur? How Computer Vision Supports Art History, in Connoisseurship nel XXI secolo. Approcci, Limiti, Prospettive, A. Aggujaro & S. Albl (ed.), Rome: Artemide, 2016.
Y
P. Yarlagadda and Ommer, B., Beyond the Sum of Parts: Voting with Groups of Dependent Entities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, p. 1134--1147, 2015.
A
B. Antic and Ommer, B., Per-Sample Kernel Adaptation for Visual Recognition and Grouping, in Proceedings of the IEEE International Conference on Computer Vision, 2015.PDF icon Technical Report (1.58 MB)
R
J. C. Rubio and Ommer, B., Regularizing Max-Margin Exemplars by Reconstruction and Generative Models, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, p. 4213--4221.PDF icon Technical Report (2.8 MB)
B
P. Bell and Ommer, B., Training Argus, Kunstchronik. Monatsschrift für Kunstwissenschaft, Museumswesen und Denkmalpflege, vol. 68, p. 414--420, 2015.

Pages