Diego, F and Hamprecht, F A (2016). Structured Regression Gradient Boosting. CVPR. Proceedings. 1459-1467PDF icon Technical Report (3.97 MB)
Kondermann, D, Nair, R, Honauer, K, Krispin, K, Andrulis, J, Brock, A, Güssefeld, B, Rahimimoghaddam, M, Hofmann, S, Brenner, C and Jähne, B (2016). The HCI Benchmark Suite: Stereo and Flow Ground Truth With Uncertainties for Urban Autonomous Driving. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
Kandemir, M, Haußmann, M, Diego, F, Rajamani, K, van der Laak, J and Hamprecht, F A (2016). Variational weakly-supervised Gaussian processes. BMVC. ProceedingsPDF icon Technical Report (3.28 MB)
Kleesiek, J, Petersen, J, Döring, M, Maier-Hein, K, Köthe, U, Wick, W, Hamprecht, F A, Bendszus, M and Biller, A (2016). Virtual Raters for Reproducible and Objective Assessments in Radiology. Nature Scientific Reports. 6PDF icon Technical Report (2.81 MB)


Esparza, J (2015). 3D Reconstruction for Optimal Representation of Surroundings in Automotive HMIs, Based on Fisheye Multi-camera Systems. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Krah, N, Testa, M, Brons, S, Jäkel, O, Parodi, K, Voss, B and Rinaldi, I (2015). An advanced image processing method to improve the spatial resolution of ion radiographies. Physics in Medicine and Biology. 60 8525. http://stacks.iop.org/0031-9155/60/i=21/a=8525
Kandemir, M (2015). Asymmetric transfer learning with deep Gaussian processes. ICML. Proceedings. 730-738PDF icon Technical Report (570.95 KB)
Kandemir, M and Hamprecht, F A (2015). Cell event detection in phase-contrast microscopy sequences from few annotations. MICCAI. Proceedings. Springer. LNCS 9351 316-323PDF icon Technical Report (564.69 KB)
Beier, T, Hamprecht, F A and Kappes, J H (2015). Fusion Moves for Correlation Clustering. CVPR. Proceedings. 3507-3516PDF icon Technical Report (1.19 MB)
Rubio, J C, Eigenstetter, A and Ommer, B (2015). Generative Regularization with Latent Topics for Discriminative Object Recognition. Pattern Recognition. Elsevier. 48 3871--3880PDF icon Technical Report (5.49 MB)
Stapf, J (2015). Novel learning-based techniques for dense fluid motion measurements. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/18116
Antic, B and Ommer, B (2015). Per-Sample Kernel Adaptation for Visual Recognition and Grouping. Proceedings of the IEEE International Conference on Computer Vision. IEEEPDF icon Technical Report (1.58 MB)
Rubio, J C and Ommer, B (2015). Regularizing Max-Margin Exemplars by Reconstruction and Generative Models. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 4213--4221PDF icon Technical Report (2.8 MB)
Berger, J, Neufeld, A, Becker, F, Lenzen, F and Schnörr, C (2015). Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations. Scale Space and Variational Methods in Computer Vision (SSVM 2015). Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-18461-6_32PDF icon Technical Report (364.01 KB)
Berger, J, Lenzen, F, Becker, F, Neufeld, A and Schnörr, C (2015). Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations. http://arxiv.org/abs/1507.06810PDF icon Technical Report (4.42 MB)
Lenzen, F and Berger, J (2015). Solution-Driven Adaptive Total Variation Regularization. LNCS. Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-18461-6_17PDF icon Technical Report (857.29 KB)
Kandemir, M and Hamprecht, F A (2015). The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors. NIPS. Proceedings. 44 145-159PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
Kauppi, J P, Kandemir, M, Saarinen, V M, Hirvenkari, L, Parkkonen, L, Klami, A, Hari, R and Kaski, S (2015). Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals. NeuroImage. 112 288-298PDF icon Technical Report (2.39 MB)


Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. http://arxiv.org/abs/1404.0533
Goldlücke, B, Aubry, M, Kolev, K and Cremers, D (2014). A super-resolution framework for high-accuracy multiview reconstruction. Int. J. Comp. Vision. 106 172--191
Güssefeld, B, Kondermann, D, Schwartz, C and Klein, R (2014). Are reflectance field renderings appropriate for optical flow evaluation?. International Conference on Image Processing, ICIP 2014
Kröger, T, Kappes, J H, Beier, T, Köthe, U and Hamprecht, F A (2014). Asymmetric Cuts: Joint Image Labeling and Partitioning. Pattern Recognition - 36th German Conference, {GCPR} 2014, Münster, Germany, September 2-5, 2014, Proceedings. http://dx.doi.org/10.1007/978-3-319-11752-2_16PDF icon Technical Report (3.46 MB)
Wahl, A - S, Omlor, W, Rubio, J C, Chen, J L, Zheng, H, Schröter, A, Gullo, M, Weinmann, O, Kobayashi, K, Helmchen, F, Ommer, B and Schwab, M E (2014). Asynchronous Therapy Restores Motor Control by Rewiring of the Rat Corticospinal Tract after Stroke. Science. American Association for The Advancement of Science. 344 1250--1255. http://www.sciencemag.org/content/344/6189/1250
Maier-Hein, L, Mersmann, S, Kondermann, D, Bodenstedt, S, Sanchez, A, Stock, C, Kenngott, H, Eisenmann, M and Speidel, S (2014). Can masses of non-experts train highly accurate image classifiers? A crowdsourcing approach to instrument segmentation in laparoscopic images. MICCAI
Zhang, C, Yarkony, J and Hamprecht, F A (2014). Cell detection and segmentation using correlation clustering. MICCAI. Proceedings. Springer. 9-16PDF icon Technical Report (8.06 MB)
Kandemir, M and Hamprecht, F A (2014). Computer-aided diagnosis from weak supervision: A benchmarking study. Computerized Medical Imaging and Graphics. 42 44-50PDF icon Technical Report (4.28 MB)
Maier-Hein, L, Mersmann, S, Kondermann, D, Stock, C, Kenngott, H, Sanchez, A, Wagner, M, Preukschas, A, Wekerle, A - L, Helfert, S, Bodenstedt, S and Speidel, S (2014). Crowdsourcing for reference correspondence generation in endoscopic images. MICCAI
Beier, T, Kröger, T, Kappes, J H, Köthe, U and Hamprecht, F A (2014). Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning. 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014. http://dx.doi.org/10.1109/CVPR.2014.17PDF icon Technical Report (10.06 MB)
Kandemir, M, Feuchtinger, A, Walch, A and Hamprecht, F A (2014). Digital Pathology: Multiple instance learning can detect Barrett'scancer. ISBI. Proceedings. 1348-1351PDF icon Technical Report (2.86 MB)
Kandemir, M, Zhang, C and Hamprecht, F A (2014). Empowering multiple instance histopathology cancer diagnosis by cell graphs. MICCAI. Proceedings. Springer. 8674 228-235PDF icon Technical Report (1.76 MB)
Kandemir, M, Rubio, J C, Schmidt, U, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. MICCAI. Proceedings. Springer. 154-161PDF icon Paper (2 MB)
Kandemir, M, Rubio, J C, Schmidt, U, Wojek, C, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. Medical Image Computing and Computer-Assisted Intervention. Springer. 154--161PDF icon Technical Report (2 MB)
Knorr, M, Esparza, J, Niehsen, W and Stiller, C (2014). Extrinsic calibration of a fisheye multi-camera setup using overlapping fields of view. Intelligent Vehicles Symposium Proceedings. 1276--1281
Yarkony, J, Zhang, C and Fowlkes, C C (2014). Hierarchical Planar Correlation Clustering for Cell Segmentation. EMMCVPR. Proceedings. Springer. 8932 492-504PDF icon Technical Report (548.12 KB)
Kleesiek, J, Biller, A, Urban, G, Köthe, U, Bendszus, M and Hamprecht, F A (2014). ilastik for Multi-modal Brain Tumor Segmentation. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, 3rdplace. 12-17PDF icon Technical Report (405.91 KB)
Kandemir, M and Hamprecht, F A (2014). Instance Label Prediction by Dirichlet Process Multiple Instance Learning. UAI. ProceedingsPDF icon Technical Report (4.26 MB)
Urban, G, Bendszus, M, Hamprecht, F A and Kleesiek, J (2014). Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution. 31-35
Kandemir, M, Klami, A, Gonen, M, Vetek, A and Kaski, S (2014). Multi-task and multi-view learning of user state. Neurocomputing. 139 97-106
Straehle, C N, Kandemir, M, Köthe, U and Hamprecht, F A (2014). Multiple instance learning with response-optimized random forests. ICPR. Proceedings. 3768 - 3773PDF icon Technical Report (296.66 KB)
Meister, S (2014). On Creating Reference Data for Performance Analysis in Image Processing. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/16193