Publications

Export 224 results:
Author Title [ Type(Asc)] Year
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
Conference Paper
C. Zhang, Huber, F., Knop, M., and Hamprecht, F. A., Yeast Cell Detection and Segmentation in Bright Field Microscopy, in ISBI. Proceedings, 2014, pp. 1267-1270.PDF icon Technical Report (4.13 MB)
C. N. Straehle, Köthe, U., and Hamprecht, F. A., Weakly supervised learning of image partitioning using decision trees with structured split criteria, in ICCV 2013. Proceedings, 2013, pp. 1849-1856.PDF icon Technical Report (5.97 MB)
L. Fiaschi, Diego, F., Grosser, K. - H., Schiegg, M., Köthe, U., Zlatic, M., and Hamprecht, F. A., Tracking indistinguishable translucent objects over time using weakly supervised structured learning, in CVPR. Proceedings, 2014, pp. 2736 - 2743.PDF icon Technical Report (1.47 MB)
H. Rapp, Frank, M., Hamprecht, F. A., and Jähne, B., A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight cameras, in Proc.\ Dyn3D Workshop, Heidelberg, Sept. 11, 2007, 2007.
X. Lou and Hamprecht, F. A., Structured Learning for Cell Tracking, in NIPS 2011. Proceedings, 2011, pp. 1296-1304.PDF icon Technical Report (1.41 MB)
F. Diego and Hamprecht, F. A., Sparse Space-Time Deconvolution for Calcium Image Analysis, in NIPS. Proceedings, 2014, pp. 64-72.PDF icon Technical Report (5.27 MB)
L. Görlitz, Menze, B. H., Weber, M. - A., and Kelm, B. Michael, Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields, in Pattern Recognition, 2007, vol. 4713, pp. 224-233.PDF icon Technical Report (872.46 KB)
L. Görlitz, Menze, B. H., Weber, M. - A., and Kelm, B. Michael, Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields, in Pattern Recognition, 2007, vol. 4713, pp. 224-233.PDF icon Technical Report (872.46 KB)
A. Drory, Haubold, C., Avidan, S., and Hamprecht, F. A., Semi-Global Matching: A Principled Derivation in Terms of Message Passing, in GCPR. Proceedings, 2014, pp. 43-53.PDF icon Technical Report (2.6 MB)
B. Andres, Hamprecht, F. A., and Garbe, C. S., Selection of Local Optical Flow Models by Means of Residual Analysis, in Pattern Recognition, 2007, vol. 4713, pp. 72-81.PDF icon Technical Report (229.64 KB)
B. Andres, Hamprecht, F. A., and Garbe, C. S., Selection of Local Optical Flow Models by Means of Residual Analysis, in Pattern Recognition, 2007, vol. 4713, pp. 72-81.PDF icon Technical Report (229.64 KB)
B. Andres, Garbe, C. S., Schnörr, C., and Jähne, B., Selection of local optical flow models by means of residual analysis, in Proceedings of the 29th DAGM Symposium on Pattern Recognition, 2007, p. 72--81.
B. Andres, Garbe, C. S., Schnörr, C., and Jähne, B., Selection of local optical flow models by means of residual analysis, in Proceedings of the 29th DAGM Symposium on Pattern Recognition, 2007, p. 72--81.
B. Andres, Köthe, U., Helmstaedter, M., Denk, W., and Hamprecht, F. A., Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification, in Pattern Recognition. 30th DAGM Symposium Munich, Germany, June 10-13, 2008. Proceedings, 2008, vol. 5096, pp. 142-152.PDF icon Technical Report (1.21 MB)
C. N. Straehle, Köthe, U., Briggman, K., Denk, W., and Hamprecht, F. A., Seeded watershed cut uncertainty estimators for guided interactive segmentation, in CVPR 2012. Proceedings, 2012, pp. 765 - 772.PDF icon Technical Report (2.84 MB)
H. Zhang, Hamprecht, F. A., and Amann, A., Report about VOCs Dataset's Analysis based on Random Forests, in Proceedings of the HPC-Asia05, 2005, pp. 603-607.PDF icon Technical Report (232.13 KB)
B. Andres, Köthe, U., Bonea, A., Nadler, B., and Hamprecht, F. A., Quantitative Assessment of Image Segmentation Quality by Random Walk Relaxation Times, in Pattern Recognition. 31st DAGM Symposium, Jena, Germany, September 9-11, 2009. Proceedings, 2009, vol. 5748, pp. 502-511.PDF icon Technical Report (3.08 MB)
M. Schiegg, Heuer, B., Haubold, C., Wolf, S., Köthe, U., and Hamprecht, F. A., Proof-reading Guidance in Cell Tracking by Sampling from Tracking-by-assignment Models, in ISBI. Proceedings, 2015, pp. 394-398.PDF icon Technical Report (648.55 KB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in ICCV, Proceedings, 2011, pp. 2611 - 2618.PDF icon Technical Report (8.18 MB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in Proceedings of ICCV, 2011.PDF icon Technical Report (2.95 MB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in Proceedings of ICCV, 2011.
J. Yarkony, Beier, T., Baldi, P., and Hamprecht, F. A., Parallel Multicut Segmentation via Dual Decomposition, in New Frontiers in Mining Complex Patterns - Third International Workshop, {NFMCP} 2014, Held in Conjunction with {ECML-PKDD} 2014, Nancy, France, September 19, 2014, Revised Selected Papers, 2014.
B. H. Menze, Kelm, B. Michael, Splitthoff, N., Köthe, U., and Hamprecht, F. A., On oblique random forests, in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2011. Proceedings., 2011, pp. 453-469.PDF icon Technical Report (665.33 KB)
F. O. Kaster, Kassemeyer, S., Merkel, B., Nix, O., and Hamprecht, F. A., An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements, in Bildverarbeitung für die Medizin 2010 -- Algorithmen, Systeme, Anwendungen, 2010, pp. 97-101.PDF icon Technical Report (1.12 MB)
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 571–587.
M. Hanselmann, Köthe, U., Renard, B. Y., Kirchner, M., Heeren, R. M. A., and Hamprecht, F. A., Multivariate Watershed Segmentation of Compositional Data, in Proceedings of the 15th International Conference on Discrete Geometry for Computer Imagery (DGCI), in press, 2009, vol. 5810, pp. 180-192.PDF icon Technical Report (1.25 MB)
C. N. Straehle, Kandemir, M., Köthe, U., and Hamprecht, F. A., Multiple instance learning with response-optimized random forests, in ICPR. Proceedings, 2014, pp. 3768 - 3773.PDF icon Technical Report (296.66 KB)
G. Urban, Bendszus, M., Hamprecht, F. A., and Kleesiek, J., Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks, in MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, pp. 31-35.
B. H. Menze, Kelm, B. Michael, Heck, D., Lichy, M. P., and Hamprecht, F. A., Machine-based rejection of low quality spectra and estimation of brain tumor probabilities from magnetic resonance spectroscopic images, in Bildverarbeitung für die Medizin, 2006, pp. 31-36.PDF icon Technical Report (672.84 KB)
J. Funke, Hamprecht, F. A., and Zhang, C., Learning to Segment: Training Hierarchical Segmentation under a Topological Loss, in MICCAI. Proceedings, Part III, 2015, vol. 9351, pp. 268-275.PDF icon Technical Report (2.92 MB)

Pages