Publications

Export 224 results:
Author Title [ Type(Desc)] Year
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
Conference Paper
A. Drory, Haubold, C., Avidan, S., and Hamprecht, F. A., Semi-Global Matching: A Principled Derivation in Terms of Message Passing, in GCPR. Proceedings, 2014, pp. 43-53.PDF icon Technical Report (2.6 MB)
L. Görlitz, Menze, B. H., Weber, M. - A., and Kelm, B. Michael, Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields, in Pattern Recognition, 2007, vol. 4713, pp. 224-233.PDF icon Technical Report (872.46 KB)
L. Görlitz, Menze, B. H., Weber, M. - A., and Kelm, B. Michael, Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields, in Pattern Recognition, 2007, vol. 4713, pp. 224-233.PDF icon Technical Report (872.46 KB)
F. Diego and Hamprecht, F. A., Sparse Space-Time Deconvolution for Calcium Image Analysis, in NIPS. Proceedings, 2014, pp. 64-72.PDF icon Technical Report (5.27 MB)
X. Lou and Hamprecht, F. A., Structured Learning for Cell Tracking, in NIPS 2011. Proceedings, 2011, pp. 1296-1304.PDF icon Technical Report (1.41 MB)
H. Rapp, Frank, M., Hamprecht, F. A., and Jähne, B., A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight cameras, in Proc.\ Dyn3D Workshop, Heidelberg, Sept. 11, 2007, 2007.
L. Fiaschi, Diego, F., Grosser, K. - H., Schiegg, M., Köthe, U., Zlatic, M., and Hamprecht, F. A., Tracking indistinguishable translucent objects over time using weakly supervised structured learning, in CVPR. Proceedings, 2014, pp. 2736 - 2743.PDF icon Technical Report (1.47 MB)
C. N. Straehle, Köthe, U., and Hamprecht, F. A., Weakly supervised learning of image partitioning using decision trees with structured split criteria, in ICCV 2013. Proceedings, 2013, pp. 1849-1856.PDF icon Technical Report (5.97 MB)
C. Zhang, Huber, F., Knop, M., and Hamprecht, F. A., Yeast Cell Detection and Segmentation in Bright Field Microscopy, in ISBI. Proceedings, 2014, pp. 1267-1270.PDF icon Technical Report (4.13 MB)
Conference Proceedings
M. Kandemir and Hamprecht, F. A., Cell event detection in phase-contrast microscopy sequences from few annotations, MICCAI. Proceedings, vol. LNCS 9351. Springer, pp. 316-323, 2015.PDF icon Technical Report (564.69 KB)
S. Peter, Diego, F., Hamprecht, F. A., and Nadler, B., Cost-efficient Gradient Boosting, NIPS, poster. 2017.
M. Haußmann, Hamprecht, F. A., and Kandemir, M., Deep Active Learning with Adaptive Acquisition, IJCAI. Proceedings. pp. 2470-2476, 2019.PDF icon Technical Report (137.6 KB)
M. Kandemir and Hamprecht, F. A., The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors, NIPS. Proceedings, vol. 44. pp. 145-159, 2015.PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
C. Haubold, Uhlmann, V., Unser, M., and Hamprecht, F. A., Diverse M-best Solutions by Dynamic Programming, GCPR. Proceedings, vol. LNCS 10496. Springer, pp. 255-267, 2017.
T. Beier, Andres, B., Köthe, U., and Hamprecht, F. A., An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem, ECCV. Proceedings, vol. LNCS 9906. Springer, pp. 715-730, 2016.PDF icon Technical Report (4.89 MB)
L. Cerrone, Zeilmann, A., and Hamprecht, F. A., End-to-End Learned Random Walker for Seeded Image Segmentation, CVPR. Proceedings. pp. 12559-12568, 2019.
T. Hehn and Hamprecht, F. A., End-to-end Learning of Deterministic Decision Trees, German Conference on Pattern Recognition. Proceedings, vol. LNCS 11269. Springer, pp. 612-627, 2018.PDF icon Technical Report (1.4 MB)
F. Draxler, Veschgini, K., Salmhofer, M., and Hamprecht, F. A., Essentially No Barriers in Neural Network Energy Landscape, ICML. Proceedings, vol. 80. p. 1308--1317, 2018.PDF icon Technical Report (685.93 KB)
M. von Borstel, Kandemir, M., Schmidt, P., Rao, M., Rajamani, K., and Hamprecht, F. A., Gaussian process density counting from weak supervision, ECCV. Proceedings, vol. LNCS 9905. Springer, pp. 365-380 , 2016.PDF icon Technical Report (1.71 MB)
C. Haubold, Ales, J., Wolf, S., and Hamprecht, F. A., A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets, ECCV. Proceedings, vol. LNCS 9911. Springer, pp. 566-582, 2016.PDF icon Technical Report (1.18 MB)
M. Schiegg, Diego, F., and Hamprecht, F. A., Learning Diverse Models: The Coulomb Structured Support Vector Machine, ECCV. Proceedings, vol. LNCS 9907. Springer, pp. 585-599, 2016.PDF icon Technical Report (2.54 MB)
M. Weiler, Hamprecht, F. A., and Storath, M., Learning Steerable Filters for Rotation Equivariant CNNs, CVPR. Proceedings. pp. 849-858, 2018.PDF icon Technical Report (1.35 MB)
E. Kirschbaum, Haußmann, M., Wolf, S., Sonntag, H., Schneider, J., Elzoheiry, S., Kann, O., Durstewitz, D., and Hamprecht, F. A., LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos, ICLR. Proceedings. 2019.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, ECCV. Proceedings. Springer, pp. 571-587, 2018.
F. A. Hamprecht, Schnörr, C., and Jähne, B., Eds., Pattern Recognition – 29th DAGM Symposium, LCNS, vol. 4713. Springer, 2007.
C. Schnörr and Jähne, B., Pattern Recognition, 29th DAGM Symposium, Heidelberg, Germany, September 12-14, vol. 4713. Springer, 2007.
M. Haußmann, Hamprecht, F. A., and Kandemir, M., Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation, UAI. Proceedings. pp. 563-573, 2019.PDF icon Technical Report (1.04 MB)
S. Peter, Kirschbaum, E., Both, M., Campbell, L. A., Harvey, B. K., Heins, C., Durstewitz, D., Diego, F., and Hamprecht, F. A., Sparse convolutional coding for neuronal assembly detection, NIPS, poster. 2017.
F. Diego and Hamprecht, F. A., Structured Regression Gradient Boosting, CVPR. Proceedings. pp. 1459-1467, 2016.PDF icon Technical Report (3.97 MB)
M. Haußmann, Hamprecht, F. A., and Kandemir, M., Variational Bayesian Multiple Instance Learning with Gaussian Processes, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6570-6579, 2017.PDF icon Technical Report (1.29 MB)
M. Kandemir, Haußmann, M., Diego, F., Rajamani, K., van der Laak, J., and Hamprecht, F. A., Variational weakly-supervised Gaussian processes, BMVC. Proceedings. 2016.PDF icon Technical Report (3.28 MB)
A. Kreshuk, Funke, J., Cardona, A., and Hamprecht, F. A., Who is talking to whom: synaptic partner detection in anisotropic volumes of insect brain, MICCAI. Proceedings, vol. LNCS 9349. Springer, pp. 661-668, 2015.PDF icon Technical Report (2.14 MB)
In Collection
F. A. Hamprecht, Classification, Practical Handbook on Image Processing for Scientific and Technical Applications. CRC Press, pp. 509-519, 2004.PDF icon Technical Report (320.84 KB)
S. Hader and Hamprecht, F. A., Efficient Density Clustering, Between Data Science and Applied Data Analysis. Springer, pp. 39-48, 2003.
F. A. Hamprecht and Agrell, E., Exploring a space of materials: spatial sampling design and subset selection, Experimental Design for Combinatorial and High Throughput Materials Development. Wiley, 2003.PDF icon Technical Report (2.28 MB)

Pages