Publications

Export 224 results:
Author [ Title(Desc)] Type Year
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
C. N. Straehle, Kandemir, M., Köthe, U., and Hamprecht, F. A., Multiple instance learning with response-optimized random forests, in ICPR. Proceedings, 2014, pp. 3768 - 3773.PDF icon Technical Report (296.66 KB)
B. H. Menze, Petrich, W., and Hamprecht, F. A., Multivariate feature selection and hierarchical classification for infrared spectroscopy: serum-based detection of bovine spongiform encephalopathy, Analytical and Bioanalytical Chemistry, vol. 387, pp. 1801-1807, 2007.PDF icon Technical Report (283.47 KB)
M. Hanselmann, Köthe, U., Renard, B. Y., Kirchner, M., Heeren, R. M. A., and Hamprecht, F. A., Multivariate Watershed Segmentation of Compositional Data, in Proceedings of the 15th International Conference on Discrete Geometry for Computer Imagery (DGCI), in press, 2009, vol. 5810, pp. 180-192.PDF icon Technical Report (1.25 MB)
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, ECCV. Proceedings. Springer, pp. 571-587, 2018.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 571–587.
O
V. Ulman, Maška, M., Magnusson, K. E. G., Ronneberger, O., Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D., Radojevic, M., Smal, I., Rohr, K., Jaldén, J., Blau, H. M., Dzyubachyk, O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S. - Y., Dufour, A., Olivo-Marin, J. C., Reyes-Aldasoro, C. C., Solis-Lemus, J. A., Bensch, R., Brox, T., Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F. A., Esteves, T., Quelhas, P., Demirel, Ö., Malström, L., Jug, F., Tomančák, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M., and Ortiz-de-Solorzano, C., An Objective Comparison of Cell Tracking Algorithms, Nature Methods, vol. 14, no. 12, pp. 1141-1152, 2017.PDF icon Technical Report (4.24 MB)
F. O. Kaster, Kassemeyer, S., Merkel, B., Nix, O., and Hamprecht, F. A., An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements, in Bildverarbeitung für die Medizin 2010 -- Algorithmen, Systeme, Anwendungen, 2010, pp. 97-101.PDF icon Technical Report (1.12 MB)
F. O. Kaster, Merkel, B., Nix, O., and Hamprecht, F. A., An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements, Computer Science - Research and Development, vol. 26, pp. 65-85, 2011.PDF icon Technical Report (808.16 KB)
B. H. Menze, Kelm, B. Michael, Splitthoff, N., Köthe, U., and Hamprecht, F. A., On oblique random forests, in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2011. Proceedings., 2011, pp. 453-469.PDF icon Technical Report (665.33 KB)
E. - A. Horvát, Hanselmann, M., Hamprecht, F. A., and Zweig, K. A., One plus one makes three (for social networks), PLoS ONE, vol. 4,7, 2012.
B. H. Menze, Lichy, M. P., Bachert, P., Kelm, B. Michael, Schlemmer, H. P., and Hamprecht, F. A., Optimal Classification of Long Echo Time in vivo Magnetic Resonance Spectra in the Detection of Recurrent Brain Tumor, NMR in Biomedicine, vol. 19, pp. 599-609, 2006.PDF icon Technical Report (289.77 KB)
H. R. Künsch, Agrell, E., and Hamprecht, F. A., Optimal lattices for sampling, IEEE Transactions on Information Theory, vol. 51, pp. 634-647, 2005.
B. Y. Renard, Xu, B., Kirchner, M., Zickmann, F., Winter, D., Korten, S., Brattig, N., Tzur, A., Hamprecht, F. A., and Steen, H., Overcoming species boundaries in peptide identification with BICEPS, Molecular and Cellular Proteomics, vol. 11, 2012.PDF icon Technical Report (444.6 KB)
P
J. Yarkony, Beier, T., Baldi, P., and Hamprecht, F. A., Parallel Multicut Segmentation via Dual Decomposition, in New Frontiers in Mining Complex Patterns - Third International Workshop, {NFMCP} 2014, Held in Conjunction with {ECML-PKDD} 2014, Nancy, France, September 19, 2014, Revised Selected Papers, 2014.
F. A. Hamprecht, Schnörr, C., and Jähne, B., Eds., Pattern Recognition – 29th DAGM Symposium, LCNS, vol. 4713. Springer, 2007.
F. A. Hamprecht, Jähne, B., and Schnörr, C., Eds., Pattern Recognition, 29th DAGM Symposium, Heidelberg, Germany, September 12-14, 2007, Proceedings, vol. 4713. Springer, 2007.
C. Schnörr and Jähne, B., Pattern Recognition, 29th DAGM Symposium, Heidelberg, Germany, September 12-14, vol. 4713. Springer, 2007.
F. A. Hamprecht, Jost, D., Rüttimann, M., Calamai, F., and Kowalski, J. J., Preliminary results on the prediction of countershock success with fibrillation power, Resuscitation, vol. 50, pp. 297-299, 2001.
M. Jäger and Hamprecht, F. A., Principal Component Imagery for the Quality Monitoring of Dynamic Laser Welding Processes, IEEE Transactions on Industrial Electronics, vol. 56:4, pp. 1307-1313, 2008.
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in ICCV, Proceedings, 2011, pp. 2611 - 2618.PDF icon Technical Report (8.18 MB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in Proceedings of ICCV, 2011.PDF icon Technical Report (2.95 MB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in Proceedings of ICCV, 2011.
L. Görlitz, Menze, B. H., Kelm, B. Michael, and Hamprecht, F. A., Processing Spectral Data, Surface and Interface Analysis, vol. 41, pp. 636-644, 2009.PDF icon Technical Report (4.17 MB)
M. Schiegg, Heuer, B., Haubold, C., Wolf, S., Köthe, U., and Hamprecht, F. A., Proof-reading Guidance in Cell Tracking by Sampling from Tracking-by-assignment Models, in ISBI. Proceedings, 2015, pp. 394-398.PDF icon Technical Report (648.55 KB)

Pages