All Publications


Wieler, M (2014). Multiple Instance Learning with Random Forests and Applications in Industrial Optical Inspection. University of Heidelberg
Welbl, J (2014). Casting Random Forests as Artificial Neural Networks (and Profiting from It). GCPR. Proceedings. 765-771PDF icon Technical Report (376.24 KB)
Urban, G, Bendszus, M, Hamprecht, F A and Kleesiek, J (2014). Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution. 31-35
Urban, G (2014). Neural Networks: Optimization And Applications. University of Heidelberg
Tek, B F, Kröger, T, Mikula, S and Hamprecht, F A (2014). Automated Cell Nucleus Detection for Large-Volume Electron Microscopy of Neural Tissue. ISBI. Proceedings. 69-72PDF icon Technical Report (533.92 KB)
Straehle, C N, Kandemir, M, Köthe, U and Hamprecht, F A (2014). Multiple instance learning with response-optimized random forests. ICPR. Proceedings. 3768 - 3773PDF icon Technical Report (296.66 KB)
Straehle, C N (2014). Interactive Segmentation, Uncertainty and Learning. University of Heidelberg
Maco, B, Cantoni, M, Holtmaat, A, Kreshuk, A, Hamprecht, F A and Knott, G W (2014). Semiautomated Correlative 3D Electron Microscopy of In Vivo Imaged Axons and Dendrites. Nature Protocols. 9 1354-1366PDF icon Technical Report (2.01 MB)
Lou, X, Schiegg, M and Hamprecht, F A (2014). Active Structured Learning for Cell Tracking: Algorithm, Framework and Usability. IEEE Transactions on Medical Imaging. 33 (4) 849-860PDF icon Technical Report (6.84 MB)
Lou, X, Kloft, M, Rätsch, G and Hamprecht, F A (2014). Structured Learning from Cheap Data. Advanced Structured Prediction. The MIT PressPDF icon Technical Report (8.35 MB)
Beier, T, Kröger, T, Kappes, J H, Köthe, U and Hamprecht, F A (2014). Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning. 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014. icon Technical Report (10.06 MB)
Köthe, U, Herrmannsdörfer, F, Kats, I and Hamprecht, F A (2014). SimpleSTORM: a fast, self-calibrating reconstruction algorithm for localization microscopy. Histochemistry and Cell Biology. 141 613-627PDF icon Technical Report (2.29 MB)
Fiaschi, L, Diego, F, Grosser, K - H, Schiegg, M, Köthe, U, Zlatic, M and Hamprecht, F A (2014). Tracking indistinguishable translucent objects over time using weakly supervised structured learning. CVPR. Proceedings. 2736 - 2743PDF icon Technical Report (1.47 MB)
Drory, A, Haubold, C, Avidan, S and Hamprecht, F A (2014). Semi-Global Matching: A Principled Derivation in Terms of Message Passing. GCPR. Proceedings. 43-53PDF icon Technical Report (2.6 MB)
Kandemir, M, Feuchtinger, A, Walch, A and Hamprecht, F A (2014). Digital Pathology: Multiple instance learning can detect Barrett'scancer. ISBI. Proceedings. 1348-1351PDF icon Technical Report (2.86 MB)
Kandemir, M and Hamprecht, F A (2014). Computer-aided diagnosis from weak supervision: A benchmarking study. Computerized Medical Imaging and Graphics. 42 44-50PDF icon Technical Report (4.28 MB)
Kandemir, M and Hamprecht, F A (2014). Instance Label Prediction by Dirichlet Process Multiple Instance Learning. UAI. ProceedingsPDF icon Technical Report (4.26 MB)
Kandemir, M, Klami, A, Gonen, M, Vetek, A and Kaski, S (2014). Multi-task and multi-view learning of user state. Neurocomputing. 139 97-106
Diego, F and Hamprecht, F A (2014). Sparse Space-Time Deconvolution for Calcium Image Analysis. NIPS. Proceedings. 64-72. icon Technical Report (5.27 MB)
Decker, C and Hamprecht, F A (2014). Detecting individual body parts improves mouse behavior classification. Workshop on visual observation and analysis of Vertebrate And Insect Behavior (VAIB), 22nd International Conference on Pattern Recognition (ICPR). ProceedingsPDF icon Technical Report (1.48 MB)
Decker, C (2014). Automated Animal Behavior Classification. University of Heidelberg
Blumenthal, F (2014). Information-Geometric Optimization For Image Segmentation. University of Heidelberg
Beier, T (2014). Graph Based Image Analysis. University of Heidelberg
Kandemir, M, Rubio, J C, Schmidt, U, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. MICCAI. Proceedings. Springer. 154-161PDF icon Paper (2 MB)
Kandemir, M, Zhang, C and Hamprecht, F A (2014). Empowering multiple instance histopathology cancer diagnosis by cell graphs. MICCAI. Proceedings. Springer. 8674 228-235PDF icon Technical Report (1.76 MB)
Kröger, (2014). Learning-based Segmentation for Connectomics. University of Heidelberg
Kappes, J H, Beier, T and Schnörr, C (2014). MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves. Computer Vision - {ECCV} 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part {II}. icon Technical Report (557.49 KB)
Yarkony, J, Beier, T, Baldi, P and Hamprecht, F A (2014). Parallel Multicut Segmentation via Dual Decomposition. New Frontiers in Mining Complex Patterns - Third International Workshop, {NFMCP} 2014, Held in Conjunction with {ECML-PKDD} 2014, Nancy, France, September 19, 2014, Revised Selected Papers.
Kandemir, M, Rubio, J C, Schmidt, U, Wojek, C, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. Medical Image Computing and Computer-Assisted Intervention. Springer. 154--161PDF icon Technical Report (2 MB)
Kleesiek, J, Biller, A, Urban, G, Köthe, U, Bendszus, M and Hamprecht, F A (2014). ilastik for Multi-modal Brain Tumor Segmentation. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, 3rdplace. 12-17PDF icon Technical Report (405.91 KB)


Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Sungwoong, K, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems. CVPR 2013. ProceedingsPDF icon Technical Report (1.35 MB)
Röder, (2013). Active Learning: New Approaches, and Industrial Applications. University of Heidelberg
Hanslovsky, P (2013). Advanced Cell Tacking-By-Assignment. University of Heidelberg
Herrmannsdörfer, (2013). Simplestorm An Efficient Selfcalibrating Reconstruction Algorithm For Single And Multi-Channel Localisation Microscopy. University of Heidelberg
Straehle, C N, Peter, S, Köthe, U and Hamprecht, F A (2013). K-smallest Spanning Tree Segmentations. German Conference on Pattern Recognition (DAGM/GCPR). Proceedings. Springer. 375-384PDF icon Technical Report (1.18 MB)
Straehle, C N, Köthe, U and Hamprecht, F A (2013). Weakly supervised learning of image partitioning using decision trees with structured split criteria. ICCV 2013. Proceedings. 1849-1856PDF icon Technical Report (5.97 MB)
Fiaschi, L (2013). Learning Based Biological Image Analysis. University of Heidelberg
Xu, B (2013). Weakly Supervised Learning: Active Schemes And Partial Annotations. University of Heidelberg
Wanner, S, Straehle, C N and Goldlücke, B (2013). Globally Consistent Multi-Label Assignment on the Ray Space of 4D Light Fields. CVPR 2013. Proceedings. 1011-1018
Kausler, B X (2013). Tracking-by-Assignment as a Probabilistic Graphical Model with Applications in Developmental Biology. University of Heidelberg