Wieler, M (2014). Multiple Instance Learning with Random Forests and Applications in Industrial Optical Inspection. University of Heidelberg |
Welbl, J (2014). Casting Random Forests as Artificial Neural Networks (and Profiting from It). GCPR. Proceedings. 765-771 Technical Report (376.24 KB) |
Urban, G, Bendszus, M, Hamprecht, F A and Kleesiek, J (2014). Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution. 31-35 |
Urban, G (2014). Neural Networks: Optimization And Applications. University of Heidelberg |
Tek, B F, Kröger, T, Mikula, S and Hamprecht, F A (2014). Automated Cell Nucleus Detection for Large-Volume Electron Microscopy of Neural Tissue. ISBI. Proceedings. 69-72 Technical Report (533.92 KB) |
Straehle, C N, Kandemir, M, Köthe, U and Hamprecht, F A (2014). Multiple instance learning with response-optimized random forests. ICPR. Proceedings. 3768 - 3773 Technical Report (296.66 KB) |
Straehle, C N (2014). Interactive Segmentation, Uncertainty and Learning. University of Heidelberg |
Maco, B, Cantoni, M, Holtmaat, A, Kreshuk, A, Hamprecht, F A and Knott, G W (2014). Semiautomated Correlative 3D Electron Microscopy of In Vivo Imaged Axons and Dendrites. Nature Protocols. 9 1354-1366 Technical Report (2.01 MB) |
Lou, X, Schiegg, M and Hamprecht, F A (2014). Active Structured Learning for Cell Tracking: Algorithm, Framework and Usability. IEEE Transactions on Medical Imaging. 33 (4) 849-860 Technical Report (6.84 MB) |
Lou, X, Kloft, M, Rätsch, G and Hamprecht, F A (2014). Structured Learning from Cheap Data. Advanced Structured Prediction. The MIT Press Technical Report (8.35 MB) |
Beier, T, Kröger, T, Kappes, J H, Köthe, U and Hamprecht, F A (2014). Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning. 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014. http://dx.doi.org/10.1109/CVPR.2014.17 Technical Report (10.06 MB) |
Köthe, U, Herrmannsdörfer, F, Kats, I and Hamprecht, F A (2014). SimpleSTORM: a fast, self-calibrating reconstruction algorithm for localization microscopy. Histochemistry and Cell Biology. 141 613-627 Technical Report (2.29 MB) |
Fiaschi, L, Diego, F, Grosser, K - H, Schiegg, M, Köthe, U, Zlatic, M and Hamprecht, F A (2014). Tracking indistinguishable translucent objects over time using weakly supervised structured learning. CVPR. Proceedings. 2736 - 2743 Technical Report (1.47 MB) |
Drory, A, Haubold, C, Avidan, S and Hamprecht, F A (2014). Semi-Global Matching: A Principled Derivation in Terms of Message Passing. GCPR. Proceedings. 43-53 Technical Report (2.6 MB) |
Kandemir, M, Feuchtinger, A, Walch, A and Hamprecht, F A (2014). Digital Pathology: Multiple instance learning can detect Barrett'scancer. ISBI. Proceedings. 1348-1351 Technical Report (2.86 MB) |
Kandemir, M and Hamprecht, F A (2014). Computer-aided diagnosis from weak supervision: A benchmarking study. Computerized Medical Imaging and Graphics. 42 44-50 Technical Report (4.28 MB) |
Kandemir, M and Hamprecht, F A (2014). Instance Label Prediction by Dirichlet Process Multiple Instance Learning. UAI. Proceedings Technical Report (4.26 MB) |
Kandemir, M, Klami, A, Gonen, M, Vetek, A and Kaski, S (2014). Multi-task and multi-view learning of user state. Neurocomputing. 139 97-106 |
Diego, F and Hamprecht, F A (2014). Sparse Space-Time Deconvolution for Calcium Image Analysis. NIPS. Proceedings. 64-72. http://papers.nips.cc/paper/5342-sparse-space-time-deconvolution-for-calcium-image-analysis Technical Report (5.27 MB) |
Decker, C and Hamprecht, F A (2014). Detecting individual body parts improves mouse behavior classification. Workshop on visual observation and analysis of Vertebrate And Insect Behavior (VAIB), 22nd International Conference on Pattern Recognition (ICPR). Proceedings Technical Report (1.48 MB) |
Decker, C (2014). Automated Animal Behavior Classification. University of Heidelberg |
Blumenthal, F (2014). Information-Geometric Optimization For Image Segmentation. University of Heidelberg |
Beier, T (2014). Graph Based Image Analysis. University of Heidelberg |
Kandemir, M, Rubio, J C, Schmidt, U, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. MICCAI. Proceedings. Springer. 154-161 Paper (2 MB) |
Kandemir, M, Zhang, C and Hamprecht, F A (2014). Empowering multiple instance histopathology cancer diagnosis by cell graphs. MICCAI. Proceedings. Springer. 8674 228-235 Technical Report (1.76 MB) |
Kröger, (2014). Learning-based Segmentation for Connectomics. University of Heidelberg |
Kappes, J H, Beier, T and Schnörr, C (2014). MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves. Computer Vision - {ECCV} 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part {II}. http://dx.doi.org/10.1007/978-3-319-16181-5_37 Technical Report (557.49 KB) |
Yarkony, J, Beier, T, Baldi, P and Hamprecht, F A (2014). Parallel Multicut Segmentation via Dual Decomposition. New Frontiers in Mining Complex Patterns - Third International Workshop, {NFMCP} 2014, Held in Conjunction with {ECML-PKDD} 2014, Nancy, France, September 19, 2014, Revised Selected Papers. http://dx.doi.org/10.1007/978-3-319-17876-9_4 |
Kandemir, M, Rubio, J C, Schmidt, U, Wojek, C, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. Medical Image Computing and Computer-Assisted Intervention. Springer. 154--161 Technical Report (2 MB) |
Kleesiek, J, Biller, A, Urban, G, Köthe, U, Bendszus, M and Hamprecht, F A (2014). ilastik for Multi-modal Brain Tumor Segmentation. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, 3rdplace. 12-17 Technical Report (405.91 KB) |