Publications

Export 224 results:
Author [ Title(Asc)] Type Year
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
B. H. Menze, Kelm, B. Michael, Splitthoff, N., Köthe, U., and Hamprecht, F. A., On oblique random forests, in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2011. Proceedings., 2011, pp. 453-469.PDF icon Technical Report (665.33 KB)
F. O. Kaster, Merkel, B., Nix, O., and Hamprecht, F. A., An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements, Computer Science - Research and Development, vol. 26, pp. 65-85, 2011.PDF icon Technical Report (808.16 KB)
F. O. Kaster, Kassemeyer, S., Merkel, B., Nix, O., and Hamprecht, F. A., An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements, in Bildverarbeitung für die Medizin 2010 -- Algorithmen, Systeme, Anwendungen, 2010, pp. 97-101.PDF icon Technical Report (1.12 MB)
V. Ulman, Maška, M., Magnusson, K. E. G., Ronneberger, O., Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D., Radojevic, M., Smal, I., Rohr, K., Jaldén, J., Blau, H. M., Dzyubachyk, O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S. - Y., Dufour, A., Olivo-Marin, J. C., Reyes-Aldasoro, C. C., Solis-Lemus, J. A., Bensch, R., Brox, T., Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F. A., Esteves, T., Quelhas, P., Demirel, Ö., Malström, L., Jug, F., Tomančák, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M., and Ortiz-de-Solorzano, C., An Objective Comparison of Cell Tracking Algorithms, Nature Methods, vol. 14, no. 12, pp. 1141-1152, 2017.PDF icon Technical Report (4.24 MB)
M
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, ECCV. Proceedings. Springer, pp. 571-587, 2018.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 571–587.
M. Hanselmann, Köthe, U., Renard, B. Y., Kirchner, M., Heeren, R. M. A., and Hamprecht, F. A., Multivariate Watershed Segmentation of Compositional Data, in Proceedings of the 15th International Conference on Discrete Geometry for Computer Imagery (DGCI), in press, 2009, vol. 5810, pp. 180-192.PDF icon Technical Report (1.25 MB)
B. H. Menze, Petrich, W., and Hamprecht, F. A., Multivariate feature selection and hierarchical classification for infrared spectroscopy: serum-based detection of bovine spongiform encephalopathy, Analytical and Bioanalytical Chemistry, vol. 387, pp. 1801-1807, 2007.PDF icon Technical Report (283.47 KB)
C. N. Straehle, Kandemir, M., Köthe, U., and Hamprecht, F. A., Multiple instance learning with response-optimized random forests, in ICPR. Proceedings, 2014, pp. 3768 - 3773.PDF icon Technical Report (296.66 KB)
B. H. Menze and Hamprecht, F. A., Multimodal Medical Image Analysis: from Visualization to Disease Modeling, Zeitschrift für Med. Physik, vol. 1, pp. 1-2, 2010.PDF icon Technical Report (481.58 KB)
G. Urban, Bendszus, M., Hamprecht, F. A., and Kleesiek, J., Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks, in MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, pp. 31-35.
B. Jähne, Brocke, M., Eisele, H., Hader, S., Hamprecht, F. A., Happold, W., Raisch, F., and Restle, J., Multidimensionale Bildverarbeitung in der Produktion, QZ, vol. 47, p. 1154--1159, 2002.
T. Beier, Pape, C., Rahaman, N., Prange, T., Berg, S., Bock, D., Cardona, A., Knott, G. W., Plaza, S. M., Scheffer, L. K., Köthe, U., Kreshuk, A., and Hamprecht, F. A., Multicut brings automated neurite segmentation closer to human performance, Nature Methods, vol. 14, no. 2, pp. 101-102, 2017.
P. J. Gee, Hamprecht, F. A., Schuler, L. D., van Gunsteren, W. F., Duchardt, E., Schwalbe, H., Albert, M., and Seebach, D., A molecular dynamics simulation study of the conformational preferences of oligo-(3- hydroxyalcanoic acids) in chloroform solution, Helv. Chim. Acta, vol. 85, pp. 618-632, 2002.
B. H. Menze, Kelm, B. Michael, Weber, M. - A., Bachert, P., and Hamprecht, F. A., Mimicking the human expert: pattern recognition for an automated assessment of data quality in MRSI, Magnetic Resonance in Medicine, vol. 59, pp. 1457-1466, 2008.PDF icon Technical Report (1.45 MB)
M. Kirchner, Steen, J. A. J., Hamprecht, F. A., and Steen, H., MGFp: An Open Mascot Generic Format Parser Library Implementation, Journal of Proteome Research, vol. 9 (5), p. 27622763, 2010.PDF icon Technical Report (125.18 KB)
M. Staudacher, Hamprecht, F. A., and Görlitz, L., Method for processing an intensity image of a microscope, Patent, Patent Number: WO2008034721A1, 2008.PDF icon Technical Report (39.81 KB)
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Maschinelles Lernen, Patent, Patent Number WO2017032775A1, 2017.PDF icon Technical Report (317.04 KB)
B. H. Menze, Kelm, B. Michael, Heck, D., Lichy, M. P., and Hamprecht, F. A., Machine-based rejection of low quality spectra and estimation of brain tumor probabilities from magnetic resonance spectroscopic images, in Bildverarbeitung für die Medizin, 2006, pp. 31-36.PDF icon Technical Report (672.84 KB)
L
E. Kirschbaum, Haußmann, M., Wolf, S., Sonntag, H., Schneider, J., Elzoheiry, S., Kann, O., Durstewitz, D., and Hamprecht, F. A., LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos, ICLR. Proceedings. 2019.
C. Sommer, Fiaschi, L., Hamprecht, F. A., and Gerlich, D., Learning-based Mitotic Cell Detection in Histopathological Images, ICPR 2012. Proceedings, pp. 2306-2309, 2012.PDF icon Technical Report (1.96 MB)
J. Funke, Hamprecht, F. A., and Zhang, C., Learning to Segment: Training Hierarchical Segmentation under a Topological Loss, in MICCAI. Proceedings, Part III, 2015, vol. 9351, pp. 268-275.PDF icon Technical Report (2.92 MB)
T. Kröger, Mikula, S., Denk, W., Köthe, U., and Hamprecht, F. A., Learning to Segment Neurons with Non-local Quality Measures, in MICCAI 2013. Proceedings, part II, 2013, vol. 8150, pp. 419-427.PDF icon Technical Report (2.87 MB)
X. Lou and Hamprecht, F. A., Learning to Segment Dense Cell Nuclei with Shape Prior, CVPR 2012. Proceedings, pp. 1012-1018, 2012.PDF icon Technical Report (2.66 MB)
L. Fiaschi, Nair, R., Köthe, U., and Hamprecht, F. A., Learning to Count with Regression Forest and Structured Labels, ICPR 2012. Proceedings, pp. 2685-2688, 2012.PDF icon Technical Report (3.66 MB)
M. Weiler, Hamprecht, F. A., and Storath, M., Learning Steerable Filters for Rotation Equivariant CNNs, CVPR. Proceedings. pp. 849-858, 2018.PDF icon Technical Report (1.35 MB)
F. Diego and Hamprecht, F. A., Learning Multi-Level Sparse Representation for Identifying Neuronal Activity, in Signal Processing with Adaptive Sparse Structured Representations Workshop (SPARS). Book of Abstracts., 2013.PDF icon Technical Report (1.05 MB)
F. Diego and Hamprecht, F. A., Learning Multi-Level Sparse Representation, in NIPS. Proceedings, 2013.PDF icon Technical Report (2.79 MB)
M. Schiegg, Diego, F., and Hamprecht, F. A., Learning Diverse Models: The Coulomb Structured Support Vector Machine, ECCV. Proceedings, vol. LNCS 9907. Springer, pp. 585-599, 2016.PDF icon Technical Report (2.54 MB)
S. Wolf, Schott, L., Köthe, U., and Hamprecht, F. A., Learned Watershed: End-to-End Learning of Seeded Segmentation, ICCV. pp. 2030-2038, 2017.PDF icon Technical Report (3.76 MB)

Pages